Visual, Non-Destructive, and Destructive Investigations of Polyethylene Pipes with Inhomogeneous Carbon Black Distribution for Assessing Degradation of Structural Integrity

Polymers (Basel). 2022 Mar 7;14(5):1067. doi: 10.3390/polym14051067.

Abstract

Carbon black (CB) is used in polyethylene (PE) pipes to protect against thermal and photooxidation. However, when CB is not properly dispersed in the PE matrix during processing, white regions having little or no CB concentration, known as "windows," appear within the CB/PE mixed black compound. In some cases, windows can drastically affect the structural integrity of both the pipe and butt fusion joint. In this work, PE pipes with varying amounts of windows were investigated for their characteristic window patterns, as well as quantifying the area fraction of windows (% windows). Tensile test on specimens with known % windows determined a critical limit above which the fracture strain rapidly degrades. Micro-tensile and micro-indentation results showed tear initiation at the window-black PE matrix boundary; however, they did not confirm the mechanism of tear initiation. In support of this work, a method of making thin shavings of a whole pipe cross section was developed, and the best viewing windows under cross-polarized monochromatic light were identified. In addition, a phased array ultrasonic test (PAUT) and microwave imaging (MWI) were directly applied to the pipe and confirmed the presence and patterns of the windows.

Keywords: carbon black; degradation; destructive test; non-destructive test; polyethylene pipe; “windows”.