Enhancement of Glucosinolate Formation in Broccoli Sprouts by Hydrogen Peroxide Treatment

Foods. 2022 Feb 23;11(5):655. doi: 10.3390/foods11050655.

Abstract

Broccoli sprouts are known as a rich source of health-beneficial phytonutrients: glucosinolates and phenolic compounds. The production of phytonutrients can be stimulated by elicitors that activate the plant stress response. The aim of this study was enhancing the nutritional value of broccoli sprouts using hydrogen peroxide (H2O2) as an elicitor. Daily spraying with H2O2 (500-1000 mM) enhanced the accumulation of glucosinolates, doubling their content in the cotyledons of 16/8 h photoperiod-grown 7-day sprouts compared to the water-treated controls. The application of H2O2 on dark-grown sprouts showed a smaller extent of glucosinolate stimulation than with light exposure. The treatment affected sprout morphology without reducing their yield. The H2O2-treated sprouts had shorter hypocotyls and roots, negative root tropism and enhanced root branching. The activated glucosinolate production became evident 24 h after the first H2O2 application and continued steadily until harvest. Applying the same treatment to greenhouse-grown wild rocket plants caused scattered leaf bleaching, a certain increase in glucosinolates but decline in phenolics content. The H2O2 treatment of broccoli sprouts caused a 3.5-fold upregulation of APK1, a gene related to sulfur mobilization for glucosinolate synthesis. Comparing the APK1 expression with the competing gene GSH1 using sulfur for antioxidant glutathione production indicated that glutathione synthesis prevailed in the sprouts over the formation of glucosinolates.

Keywords: Brassica oleracea var. italica; Diplotaxis tenuifolia; elicitation; gene expression; glucosinolates; phenolic compounds; phytonutrients; sprouts; sulfur metabolism; wild rocket.