TiO2(B) nanosheets modified Li4Ti5O12microsphere anode for high-rate lithium-ion batteries

Nanotechnology. 2022 Mar 25;33(24). doi: 10.1088/1361-6528/ac5bba.

Abstract

With the increasing applications of Lithium-ion batteries in heavy equipment and engineering machinery, the requirements of rate capability are continuously growing. The high-rate performance of Li4Ti5O12(LTO) needs to be further improved. In this paper, we synthesized LTO microsphere-TiO2(B) nanosheets (LTO-TOB) composite by using a solvothermal method and subsequent calcination. LTO-TOB composite combines the merits of TiO2(B) and LTO, resulting in excellent high-rate capability (144.8, 139.3 and 124.4 mAh g-1at 20 C, 30 C and 50 C) and superior cycling stability (98.9% capability retention after 500 cycles at 5 C). Its excellent electrochemical properties root in the large surface area, high grain-boundary density and pseudocapacitive effect of LTO-TOB. This work reveals that LTO-TOB composite can be a potential anode for high power and energy density lithium-ion batteries.

Keywords: Li4Ti5O12; charge transfer; electrochemistry; lithium-ion batteries; surface modification.