Mass spectrometric stochastic dynamic 3D structural analysis of mixture of steroids in solution - Experimental and theoretical study

Steroids. 2022 May:181:109001. doi: 10.1016/j.steroids.2022.109001. Epub 2022 Mar 4.

Abstract

There is explored, herein, functional relation: Experimental mass spectrometric phenomenon, obeying a certain scientific law ⇔ 3D molecular conformations and electronic structures of analytes obtained for quantum chemical theories. The paper answers to questions: (a) What evidence claims these actual relations among measurable and theoretical parameters, experimental factors and molecular properties; (b) how the provided evidence is collected and used; and (c) how empirical proof relates to assign and explain mass spectrometric phenomena of steroids afforded by our innovative stochastic dynamic mass spectrometric formula, D″SD = 2.6388.10-17.(<I2>-<I>2), quantum chemical 3D conformations, electronic structures and energetics of molecules, respectively. The paper address issue concerning empirical evidence at very high-to-exact level of assignment of 3D molecular conformations of steroids to experimental mass spectrometric fragment ions, accounting precisely for (i) effect of protonation; (ii) intramolecular rearrangement for A-D rings of steroidal skeleton and proton transfer effect, if any; in addition to (iii) examination of enantiomers of steroids in mixture with different stereochemistry, (R) and (S), of a set of six atoms of the molecular backbone of hydrocortisone (1), deoxycorticosterone (2), progesterone (3) and methyltestosterone (4), respectively. Results from testosterone (5) are discussed, as well. There are used ultra-high resolution atmospheric pressure chemical ionization mass spectrometric data on analytes (1)-(4) at ng.(mL)-1 concentration levels in mixtures in solution obtained for positive operation mode. High accuracy static and molecular dynamic quantum chemical computations and chemometrics are also utilized. Experimental 3D structural parameters of steroids obtained for stochastic dynamic diffusion theory are correlated with available crystallographic data.

Keywords: 3D structural analysis; Diffusion; Mass spectrometry; Quantum chemistry; Steroids; Stochastic dynamics.

MeSH terms

  • Mass Spectrometry / methods
  • Models, Theoretical
  • Molecular Conformation
  • Quantum Theory*
  • Steroids*

Substances

  • Steroids