Preclinical evaluation and pilot clinical study of [18F]AlF-labeled FAPI-tracer for PET imaging of cancer associated fibroblasts

Acta Pharm Sin B. 2022 Feb;12(2):867-875. doi: 10.1016/j.apsb.2021.09.032. Epub 2021 Oct 15.

Abstract

In recent years, fibroblast activation protein (FAP) has emerged as an attractive target for the diagnosis and radiotherapy of cancers using FAP-specific radioligands. Herein, we aimed to design a novel 18F-labeled FAP tracer ([18F]AlF-P-FAPI) for FAP imaging and evaluated its potential for clinical application. The [18F]AlF-P-FAPI novel tracer was prepared in an automated manner within 42 min with a non-decay corrected radiochemical yield of 32 ± 6% (n = 8). Among A549-FAP cells, [18F]AlF-P-FAPI demonstrated specific uptake, rapid internalization, and low cellular efflux. Compared to the patent tracer [18F]FAPI-42, [18F]AlF-P-FAPI exhibited lower levels of cellular efflux in the A549-FAP cells and higher stability in vivo. Micro-PET imaging in the A549-FAP tumor model indicated higher specific tumor uptake of [18F]AlF-P-FAPI (7.0 ± 1.0% ID/g) compared to patent tracers [18F]FAPI-42 (3.2 ± 0.6% ID/g) and [68Ga]Ga-FAPI-04 (2.7 ± 0.5% ID/g). Furthermore, in an initial diagnostic application in a patient with nasopharyngeal cancer, [18F]AlF-P-FAPI and [18F]FDG PET/CT showed comparable results for both primary tumors and lymph node metastases. These results suggest that [18F]AlF-P-FAPI can be conveniently prepared, with promising characteristics in the preclinical evaluation. The feasibility of FAP imaging was demonstrated using PET studies.

Keywords: Fibroblast activation protein; Nasopharyngeal cancer; PET; [18F]AlF-P-FAPI.