The glycerol-3-phosphate dehydrogenases GpsA and GlpD constitute the oxidoreductive metabolic linchpin for Lyme disease spirochete host infectivity and persistence in the tick

PLoS Pathog. 2022 Mar 7;18(3):e1010385. doi: 10.1371/journal.ppat.1010385. eCollection 2022 Mar.

Abstract

We have identified GpsA, a predicted glycerol-3-phosphate dehydrogenase, as a virulence factor in the Lyme disease spirochete Borrelia (Borreliella) burgdorferi: GpsA is essential for murine infection and crucial for persistence of the spirochete in the tick. B. burgdorferi has a limited biosynthetic and metabolic capacity; the linchpin connecting central carbohydrate and lipid metabolism is at the interconversion of glycerol-3-phosphate and dihydroxyacetone phosphate, catalyzed by GpsA and another glycerol-3-phosphate dehydrogenase, GlpD. Using a broad metabolomics approach, we found that GpsA serves as a dominant regulator of NADH and glycerol-3-phosphate levels in vitro, metabolic intermediates that reflect the cellular redox potential and serve as a precursor for lipid and lipoprotein biosynthesis, respectively. Additionally, GpsA was required for survival under nutrient stress, regulated overall reductase activity and controlled B. burgdorferi morphology in vitro. Furthermore, during in vitro nutrient stress, both glycerol and N-acetylglucosamine were bactericidal to B. burgdorferi in a GlpD-dependent manner. This study is also the first to identify a suppressor mutation in B. burgdorferi: a glpD deletion restored the wild-type phenotype to the pleiotropic gpsA mutant, including murine infectivity by needle inoculation at high doses, survival under nutrient stress, morphological changes and the metabolic imbalance of NADH and glycerol-3-phosphate. These results illustrate how basic metabolic functions that are dispensable for in vitro growth can be essential for in vivo infectivity of B. burgdorferi and may serve as attractive therapeutic targets.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Animals
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Borrelia burgdorferi Group*
  • Borrelia burgdorferi*
  • Glycerol / metabolism
  • Glycerolphosphate Dehydrogenase / genetics
  • Glycerolphosphate Dehydrogenase / metabolism
  • Lyme Disease*
  • Mice
  • NAD / metabolism
  • Oxidation-Reduction
  • Phosphates / metabolism
  • Ticks*

Substances

  • Bacterial Proteins
  • Phosphates
  • NAD
  • Glycerolphosphate Dehydrogenase
  • Glycerol