Simultaneous electrical online estimation of changes in blood hematocrit and temperature in cardiopulmonary bypass

J Artif Organs. 2022 Dec;25(4):305-313. doi: 10.1007/s10047-022-01320-9. Epub 2022 Mar 7.

Abstract

Two equations have been developed from multi-frequency measurements of blood impedance Zb for a simultaneous electrical online estimation of changes in blood hematocrit ΔH [%] and temperatures ΔT [K] in cardiopulmonary bypass (CPB). Zb of fixed blood volumes at varying H and T were measured by an impedance analyzer and changes in blood conductivity σb and relative permittivity εb computed. Correlation analysis were based on changes in σb with H or T at f = 1 MHz while H and T equations were developed by correlating changes in εb with H and T at dual frequencies of f = 1 MHz and f = 10 MHz which best capture blood plasma Zp and red blood cell cytoplasm Zcyt impedances respectively. Results show high correlations between σb and H (R2 = 0.987) or σb and T (R2 = 0.9959) indicating dependence of the electrical parameters of blood on its H and T. Based on computed εb, changes in blood hematocrit ΔH and temperature ΔT at a given time t are estimated as ΔH(t) = 1.7298Δεb (f = 1 MHz) - 1.0669Δεb (f = 10 MHz) and ΔT(t) = -2.186Δεb (f = 1 MHz) + 2.13Δεb (f = 10 MHz). When applied to a CPB during a canine mitral valve plasty, ΔH and ΔT had correlations of R2 = 0.9992 and R2 = 0.966 against H and T respectively as measured by conventional devices.

Keywords: Cardiopulmonary bypass; Hematocrit; Relative permittivity; Simultaneous online estimation; Temperature.

MeSH terms

  • Animals
  • Cardiopulmonary Bypass* / methods
  • Dogs
  • Electric Impedance
  • Hematocrit
  • Temperature