Elucidate interfacial disorder effects on the perpendicular magnetic anisotropy at Fe/MgO heterostructure from first-principles calculations

J Phys Condens Matter. 2022 Mar 23;34(21). doi: 10.1088/1361-648X/ac5a92.

Abstract

The interfacial perpendicular magnetic anisotropy (PMA) plays a key role in spintronic applications such as memory recording and computational devices. Despite robust PMA being reported at the Fe/MgO interface, there are still inconsistencies in the disorder effects on the interfacial magnetic anisotropy. Here we reported a comprehensive study of the influence of the interfacial disorder, including the underoxidization, overoxidization, and oxygen migration, on the PMA of the Fe/MgO interface using first-principles calculations. Compared to the pristine Fe/MgO interface, the underoxidation at the Fe/MgO interface keeps the interfacial PMA but reduces the interfacial anisotropy constant (Ki). The overoxidization and oxygen migration at the interface both reduce theKiand even switch the easy magnetization axis from the out-of-plane to in-plane direction at high oxygen percentage. In all the cases, theKiwas found strongly correlated to the difference of the orbital magnetic moment along the in-plane and out-of-plane direction. Calculated layer-resolved and orbital-resolvedKirevealed that the orbital coupling between thedxyanddx2-y2states of the interfacial Fe layer plays a key role in determining the interfacial magnetic anisotropy. This work provides deep insights into the oxidation effects on the interfacial magnetic anisotropy of Fe/MgO system and a possible avenue to tune theKivia interfacial engineering.

Keywords: Fe/MgO; disorder; first-principles; heterostructure; interface; perpendicular magnetic anisotropy.