QM/MM Molecular Dynamics Simulations Revealed Catalytic Mechanism of Urease

J Phys Chem B. 2022 Mar 17;126(10):2087-2097. doi: 10.1021/acs.jpcb.1c10200. Epub 2022 Mar 3.

Abstract

Urease catalyzes the hydrolysis of urea to form ammonia and carbamate, inducing an overall pH increase that affects both human health and agriculture. Inhibition, mutagenesis, and kinetic studies have provided insights into its enzymatic role, but there have been debates on the substrate binding mode as well as the reaction mechanism. In the present study, we report quatum mechanics-only (QM-only) and quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) calculations on urease that mainly investigate the binding mode of urea and the mechanism of the urease-catalyzed hydrolysis reaction. Comparison between the experimental data and our QM(GFN2-xTB)/MM metadynamics results demonstrates that urea hydrolysis via a complex with bidentate-bound urea is much more favorable than via that with monodentate-bound urea for both nucleophilic attack and the subsequent proton transfer steps. We also indicate that the bidentate coordination of urea fits the active site with a closed conformation of the mobile flap and can facilitate the stabilization of transition states and intermediates by forming multiple hydrogen bonds with certain active site residues.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Humans
  • Hydrolysis
  • Kinetics
  • Molecular Dynamics Simulation*
  • Quantum Theory
  • Urea / chemistry
  • Urease* / chemistry
  • Urease* / metabolism

Substances

  • Urea
  • Urease