Epiplakin1 promotes the progression of esophageal squamous cell carcinoma by activating the PI3K-AKT signaling pathway

Thorac Cancer. 2022 Apr;13(8):1117-1125. doi: 10.1111/1759-7714.14366. Epub 2022 Mar 3.

Abstract

Background: Epiplakin1 (EPPK1) has been associated with disease progression and unfavorable prognosis of many cancers, but its functional involvement in esophageal squamous cell carcinoma (ESCC) remains to be uncovered.

Methods: The Quantitative Real-time PCR (qPCR) assay was employed to determine the expression of EPPK1 in ESCC tissues and cells. CCK-8 assay, colony forming assay, wound healing assay, and transwell invasion assay were utilized to evaluate the effects of EPPK1 on cell proliferation, migration, and invasion capacity in ESCC cells using small interfering ribonucleic acids. Flow cytometry was performed to estimate the cell apoptotic rate caused by silencing of EPPK1. The proteins related to epithelial-to-mesenchymal transition (EMT), apoptosis, and activation of the phosphatidylinositol 3-kinase/serine threonine protein kinase 1 (PI3K/AKT) signaling pathway were measured by western blot.

Results: The expression of EPPK1 was dramatically increased in ESCC tissues and cells compared to that in relative controls. Additionally, silencing of EPPK1 suppressed ESCC cell growth, colony formation, migration, invasion, and EMT, while promoting ESCC cell apoptosis. Furthermore, EPPK1 induced ESCC cell progression via mediating the PI3K/AKT signaling pathway.

Conclusion: EPPK1 promotes ESCC progression by modulating the PI3K/AKT signaling pathway and could serve as a potential target for ESCC treatment.

Keywords: EPPK1; ESCC; PI3K/AKT pathway; tumor progression.

MeSH terms

  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Esophageal Neoplasms* / pathology
  • Esophageal Squamous Cell Carcinoma* / pathology
  • Humans
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction

Substances

  • Proto-Oncogene Proteins c-akt