Anti-corrosion and self-healing coatings with polyaniline/epoxy copolymer-urea-formaldehyde microcapsules for rusty steel sheets

J Colloid Interface Sci. 2022 Jun 15:616:605-617. doi: 10.1016/j.jcis.2022.02.088. Epub 2022 Feb 22.

Abstract

Polyaniline (PANI)/Epoxy copolymer as a core material was synthesized via a chemical oxidation method. Various analytical techniques, including scanning electron microscope, Fourier transform infrared spectroscopy, energy dispersive spectroscopy, thermogravimetry, and electrochemical impedance spectroscopy, were used to characterize the morphology, compositions, and self-healing and anticorrosion properties of the prepared microcapsules and coatings. The prepared PANI/Epoxy copolymer showed the best electrochemical corrosion resistance when the ratio of PANI to epoxy was 0.05: 1 (wt.:wt.). For the mass fraction of the core (PANI/Epoxy copolymer) of 60.84 ± 0.06 wt%, the mean particle diameter of the prepared microcapsules was 4.20 ± 0.92 μm. The coatings with 15 wt% microcapsules possessed excellent self-healing performance and corrosion resistance. The low-frequency impedance modulus at 0.01 Hz of scratched coatings immersed in the NaCl solution for 24 h was 5.27 × 106 Ω·cm2. Scratched self-repairing coating samples were able to resist corrosion for 384 h; thus, the microcapsules can be used to significantly extend the service life of the coatings. Microcapsule-containing PANI/Epoxy copolymers are expected to find use in anticorrosion coating systems, where the coatings could be applied directly on rusty steel surfaces.

Keywords: Coating; Corrosion resistance; Microcapsules; PANI; Rusty steel sheets; Self-healing.