Experimental and Theoretical Studies of the Pyrazoline Derivative 5-(4-methylphenyl)-3-(5-methylfuran-2-yl)-1-phenyl-4,5-dihydro-1H-Pyrazole and its Application for Selective Detection of Cd2+ ion as Fluorescent Sensor

J Fluoresc. 2022 May;32(3):969-981. doi: 10.1007/s10895-022-02906-5. Epub 2022 Mar 1.

Abstract

A simple fluorescent chemosensor 5-(4-methylphenyl)-3-(5-methylfuran-2-yl)-1-phenyl-4, 5-dihydro-1H-pyrazole (PY) has been synthesized for the detection of Cd2+ ion.The fluorescent probe PY shows high selectivity for Cd2+in the presence of othermetal ions (Co2+, Cu2+, Hg2+, Mn2+, Zn2+, Fe3+, Pb2+, Ni2+, and Al3+). The fluorescence intensity of the PY has been strongly quenched with increasing concentration of Cd2+ (0-0.9 μM)via photoinduced electron transfer mechanism. The binding constant of Cd2+ to PY for the 1:1 complex isfound to be 5.3 × 105 M-1with a detection limit of 0.09 μM. The chemosensor was successfully applied for determination of Cd2+ in different water samples (tap, river, and bottled water) showing good recovery values in the range of 94.8-101.7% with RSD less than 3%. Density functional theory (DFT) calculations were also performed to investigate electronic and spectral characteristics which are quite agreeable with the experimental value. The results show that the synthesized fluorescent chemosensor shows good selectivity towards Cd2+ and can be readily applied for the detection of Cd2+ in real samples including water samples.

Keywords: Cadmium ion; DFT Study; Fluorescent Probe; Pyrazoline.

MeSH terms

  • Cadmium*
  • Drinking Water*
  • Fluorescent Dyes
  • Ions
  • Models, Theoretical
  • Pyrazoles
  • Spectrometry, Fluorescence / methods

Substances

  • Drinking Water
  • Fluorescent Dyes
  • Ions
  • Pyrazoles
  • Cadmium