Melamine-induced synthesis of a structurally perfect kagomé antiferromagnet

Chem Commun (Camb). 2022 Mar 18;58(23):3763-3766. doi: 10.1039/d2cc00416j.

Abstract

We report here a structurally perfect kagomé lattice {[Cu3(bpy)6](SiF6)3(melamine)8}n (1), where bpy is 4,4'-bipyridine and [SiF6]2- is a hexafluorosilicate anion. In comparison to general 1D linear, 2D layered and 3D cubic metal-organic frameworks, by using Cu2+ nodes and bpy ligands, a perfect kagomé lattice was synthesized by introducing C3 symmetrical melamine molecules. Magnetic susceptibility and low-temperature heat capacity measurements indicated weak antiferromagnetic interactions between the spins and no long-range magnetic ordering to 0.7 K. Using C3 symmetrical melamine molecules can be considered as a challenging synthetic strategy to afford new topological materials.