Device performance improvements in all-inorganic perovskite light-emitting diodes: the role of binary ammonium cation terminals

Phys Chem Chem Phys. 2022 Mar 9;24(10):6208-6214. doi: 10.1039/d2cp00035k.

Abstract

All-inorganic perovskites, like CsPbBr3, have gained particular concern due to their excellent material stability. However, aside from the general defect issue in perovskite materials, all-inorganic perovskites also suffer from poor film quality, leading to low device efficiency, especially of perovskite light-emitting diodes (PeLEDs) employing a thin perovskite film as the emission layer. Herein, 1,4-phenyldimethylammonium dibromide (phDMADBr), which has ammonium cations (NH3+) on both terminals, is introduced as the additive in the precursor solution. It is proved that phDMADBr can improve the film coverage; meanwhile, it also presents a more intense passivation effect on point defects than a similar additive with a single NH3+ terminal. As demonstrated by density functional theory (DFT) calculations, phDMADBr tends to anchor onto the Br-dangling bond with both NH3+ tails and enhances the adhesion to the perovskite grain surface. The exposed hydrophobic aryl also protects the perovskite from detrimental environmental factors. Correspondingly, the maximum luminance (Lmax), current efficiency (CE), and device stability of the PeLEDs are enhanced. This work offers special guidance for screening passivation additives for inorganic perovskites.