Effects of citric acid on antioxidant system and carbon-nitrogen metabolism of Elymus dahuricus under Cd stress

Ecotoxicol Environ Saf. 2022 Mar 15:233:113321. doi: 10.1016/j.ecoenv.2022.113321. Epub 2022 Feb 25.

Abstract

Exogenous citric acid (CA), which acts as an important intermediate product of the tricarboxylic acid (TCA) cycle, can enhance the TCA cycle activity and activate the branched operation of the TCA cycle, thus providing energy required for resistance to adverse conditions. However, the effects of CA application on TCA cycle-related metabolism under cadmium (Cd) were less reported. To investigate the effects of CA on the Cd tolerance of Dahurian wildrye grass (Elymus dahuricus), the growth, Cd accumulation, antioxidant systems and metabolic pathways of leaves and roots were investigated by a potted soil experiment with Cd (50 mg/kg) and CA (4 mmol/L) treatments. The results showed that Cd stress seriously affected growth and induced the production of reactive oxygen in clover leaves and roots, leading to membrane peroxidation and activation of the antioxidant defense system. Exogenous CA could not only effectively relieve the inhibition of Cd stress on growth and reduce the amount of reactive oxygen by increasing the antioxidant capacities but could also promote an increase in root Cd content. Metabolomic results showed that the application of CA increased the contents of sugars, sugar alcohols, and resistant substances, and promoted the metabolism of amino acids including γ-aminobutyric acid (GABA). These alterations contributed the significant enhancement of the Cd resistance, which may be related to the changes in the TCA cycle activity and the metabolism of the shikimic acid pathway in leaves and roots as well as GABA shunt in roots.

Keywords: Antioxidant defense; Cd stress; Citric acid; GC-MS; Metabolomics.

MeSH terms

  • Antioxidants / metabolism
  • Cadmium* / metabolism
  • Cadmium* / toxicity
  • Carbon / metabolism
  • Citric Acid / metabolism
  • Citric Acid / pharmacology
  • Elymus* / metabolism
  • Nitrogen / metabolism
  • Nitrogen / pharmacology
  • Plant Leaves / metabolism
  • Plant Roots / metabolism

Substances

  • Antioxidants
  • Cadmium
  • Citric Acid
  • Carbon
  • Nitrogen