Rabies Virus Glycoprotein-Mediated Transportation and T Cell Infiltration to Brain Tumor by Magnetoelectric Gold Yarnballs

ACS Nano. 2022 Mar 22;16(3):4014-4027. doi: 10.1021/acsnano.1c09601. Epub 2022 Feb 28.

Abstract

T lymphocyte infiltration with immunotherapy potentially suppresses most devastating brain tumors. However, local immune privilege and tumor heterogeneity usually limit the penetration of immune cells and therapeutic agents into brain tumors, leading to tumor recurrence after treatment. Here, a rabies virus glycoprotein (RVG)-camouflaged gold yarnball (RVG@GY) that can boost the targeting efficiency at a brain tumor via dual hierarchy- and RVG-mediated spinal cord transportation, facilitating the decrease of tumor heterogeneity for T cell infiltration, is developed. Upon magnetoelectric irradiation, the electron current generated on the GYs activates the electrolytic penetration of palbociclib-loaded dendrimer (Den[Pb]) deep into tumors. In addition, the high-density GYs at brain tumors also induces the disruption of cell-cell interactions and T cell infiltration. The integration of the electrolytic effects and T cell infiltration promoted by drug-loaded RVG@GYs deep in the brain tumor elicits sufficient T cell numbers and effectively prolongs the survival rate of mice with orthotopic brain tumors.

Keywords: T cell infiltration; drug delivery; immune therapy; nanoparticles; rabies virus glycoprotein.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Neoplasms* / drug therapy
  • Glycoproteins
  • Gold / therapeutic use
  • Mice
  • Rabies virus*
  • T-Lymphocytes / pathology

Substances

  • Glycoproteins
  • Gold