Developmental trajectory of MEG resting-state oscillatory activity in children and adolescents: a longitudinal reliability study

Cereb Cortex. 2022 Nov 21;32(23):5404-5419. doi: 10.1093/cercor/bhac023.

Abstract

Neural oscillations may be sensitive to aspects of brain maturation such as myelination and synaptic density changes. Better characterization of developmental trajectories and reliability is necessary for understanding typical and atypical neurodevelopment. Here, we examined reliability in 110 typically developing children and adolescents (aged 9-17 years) across 2.25 years. From 10 min of magnetoencephalography resting-state data, normalized source spectral power and intraclass correlation coefficients were calculated. We found sex-specific differences in global normalized power, with males showing age-related decreases in delta and theta, along with age-related increases in beta and gamma. Females had fewer significant age-related changes. Structural magnetic resonance imaging revealed that males had more total gray, subcortical gray, and cortical white matter volume. There were significant age-related changes in total gray matter volume with sex-specific and frequency-specific correlations to normalized power. In males, increased total gray matter volume correlated with increased theta and alpha, along with decreased gamma. Split-half reliability was excellent in all frequency bands and source regions. Test-retest reliability ranged from good (alpha) to fair (theta) to poor (remaining bands). While resting-state neural oscillations can have fingerprint-like quality in adults, we show here that neural oscillations continue to evolve in children and adolescents due to brain maturation and neurodevelopmental change.

Keywords: magnetoencephalography; neurodevelopment; reliability; resting state; spectral power.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Adolescent
  • Adult
  • Brain / diagnostic imaging
  • Brain Mapping* / methods
  • Child
  • Female
  • Humans
  • Magnetic Resonance Imaging / methods
  • Magnetoencephalography* / methods
  • Male
  • Reproducibility of Results