Synergistic Mechanism of Combined Inhibitors on the Selective Flotation of Arsenopyrite and Pyrite

ACS Omega. 2022 Feb 10;7(7):6302-6312. doi: 10.1021/acsomega.1c06902. eCollection 2022 Feb 22.

Abstract

The selective action mechanism of sodium butyl xanthate (BX), ammonium salt (NH4 +), and sodium m-nitrobenzoate (m-NBO) on pyrite and arsenopyrite was examined by experiments and quantum chemistry. The experiments show that under alkaline conditions, ammonium salt (NH4 +) and m-NBO can have a strong inhibitory effect on arsenopyrite. At pH 11, the recovery rate of arsenopyrite reduces to 16%. The presence of ammonium salt (NH4 +) and m-NBO reduces the adsorption energy of BX on arsenopyrite to ΔE = -23.23 kJ/mol, which is far less than the adsorption energy on the surface of pyrite, ΔE = -110.13 kJ/mol. The results are helpful to understand the synergistic mechanism of the agent on the surface of arsenopyrite and pyrite, thus providing a reference for the selective separation of arsenopyrite.