Marine Dissolved Organic Matter Shares Thousands of Molecular Formulae Yet Differs Structurally across Major Water Masses

Environ Sci Technol. 2022 Mar 15;56(6):3758-3769. doi: 10.1021/acs.est.1c04566. Epub 2022 Feb 25.

Abstract

Most oceanic dissolved organic matter (DOM) is still not fully molecularly characterized. We combined high-field nuclear magnetic resonance (NMR) and ultrahigh-resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) for the structural and molecular formula-level characterization of solid-phase extracted (SPE) DOM from surface, mesopelagic, and bathypelagic Atlantic and Pacific Ocean samples. Using a MicroCryoProbe, unprecedented low amounts of SPE-DOM (∼1 mg carbon) were sufficient for two-dimensional NMR analysis. Low proportions of olefinic and aromatic relative to aliphatic and carboxylated structures (NMR) at the sea surface were likely related to photochemical transformations. This was consistent with lower molecular masses and higher degrees of saturation and oxygenation (FT-ICR-MS) compared to those of the deep sea. Carbohydrate structures in the mesopelagic North Pacific Ocean suggest export and release from sinking particles. In our sample set, the universal molecular DOM composition, as captured by FT-ICR-MS, appears to be structurally more diverse when analyzed by NMR, suggesting DOM variability across oceanic provinces to be more pronounced than previously assumed. As a proof of concept, our study takes advantage of new complementary approaches resolving thousands of structural and molecular DOM features while applying reasonable instrument times, allowing for the analysis of large oceanic data sets to increase our understanding of marine DOM biogeochemistry.

Keywords: Atlantic Ocean; FT-ICR-MS; Pacific Ocean; dissolved organic matter; high-field NMR; meridional overturning circulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dissolved Organic Matter*
  • Mass Spectrometry / methods
  • Molecular Weight
  • Water* / chemistry

Substances

  • Dissolved Organic Matter
  • Water