Efficient silicon and side-cladding waveguide modulator with electro-optic polymer

Opt Express. 2022 Jan 17;30(2):1885-1895. doi: 10.1364/OE.447616.

Abstract

Efficient electro-optic (EO) modulation can be generated in the hybrid silicon modulator with EO polymer in the form of an in-plane coplanar waveguide and electrode structure. Strong confinement of the optical field in the hybrid structure is critical to performing efficient electric poling and modulation of the EO polymer. The waveguide consists of silica-based side claddings and an EO core for increasing the integral of the optical field and the overlap interaction between the optical field and the modulated electric field within the EO polymer. We discuss in detail the volume resistivity dependence of the efficiency of electric poling and modulation for various side-cladding materials. In a Mach-Zehnder interferometer modulator, the measured half-wave-voltage length product (VπL) is 1.9 V·cm at an optical communication wavelength of 1,550 nm under the TE optical mode operation. The high-speed signaling of the device is demonstrated by generating on-off-keying transmission at signal rates up to 52 Gbit/s with a Q factor of 6.1 at a drive voltage of 2.0 Vpp.