Multi-scattering software part II: experimental validation for the light intensity distribution

Opt Express. 2022 Jan 17;30(2):1261-1279. doi: 10.1364/OE.445394.

Abstract

This article, Part II of an article series on GPU-accelerated Monte Carlo simulation of photon transport through turbid media, focuses on the validation of the online software Multi-Scattering. While Part I detailed the implementation of the computational model, simulated and experimental results are now compared for the distribution of the scattered light intensity. The scattering phantoms prepared here are aqueous dispersions of polystyrene microspheres of diameter D = 0.5, 2 and 5 μm and at various concentrations, resulting in optical depth ranging from OD = 1 to 17.5. The Lorenz-Mie scattering phase functions used in the simulations have been verified experimentally at low particle concentrations by analyzing the angular light intensity distribution at the Fourier plane of a collecting lens. The validation approach herein accounts for the specific light collection and image formation by the camera. The front and side surfaces of the medium are imaged and the corresponding light intensity distributions are compared qualitatively and quantitatively. It is concluded that the model enables reliable simulations over the tested parameters, offering predictive simulations of transmitted intensities with a mean relative error ≤~19% over the full range. The online software is available at: https://multi-scattering.com/.