Investigation of the Contact Characteristics of Silicon-Gold in an Anodic Bonding Structure

Micromachines (Basel). 2022 Feb 6;13(2):264. doi: 10.3390/mi13020264.

Abstract

Anodic bonding is broadly utilized to realize the structure support and electrical connection in the process of fabrication and packaging of MEMS devices, and the mechanical and electrical characteristics of the bonded interface of structure exhibit a significant impact on the stability and reliability of devices. For the anodic bonding structure, including the gold electrode of micro accelerometers, the elastic/plastic contact model of a gold-silicon rough surface is established based on Hertz contact theory to gain the contact area and force of Gauss surface bonding. The trans-scale finite element model of a silicon-gold glass structure is built in Workbench through the reconstruction of Gauss surface net by the reverse engineering technique. The translation load is added to mimic the process of contact to acquire the contact behaviors through the coupling of mechanical and electrical fields, and then the change law of contact resistance is obtained. Finally, the measurement shows a good agreement between the experimental results, theoretical analysis and simulation, which indicates there is almost no change of resistance when the surface gap is less than 20 nm and the resistance is less than 5Ω, while the resistance changes rapidly after the gap exceeds 20 nm.

Keywords: MEMS; anodic bonding; contact characteristics; contact resistance.