Microstructure and Mechanical Properties of Co32Cr28Ni32.94Al4.06Ti3 High-Entropy Alloy

Materials (Basel). 2022 Feb 15;15(4):1444. doi: 10.3390/ma15041444.

Abstract

High-entropy alloys have good application prospects in nuclear power plants due to their excellent mechanical properties and radiation resistance. In this paper, the microstructure of the Co32Cr28Ni32.94Al4.06Ti3 high-entropy alloy was researched using metallurgical microscopy, X-ray diffraction, and scanning electron microscopy. The mechanical properties were tested using a Vickers microhardness tester and a tensile testing machine, respectively. The results showed that Co32Cr28Ni32.94Al4.06Ti3 had a single-phase, disordered, face-centered, cubic solid-solution structure and was strengthened by solid solution. The alloy lattice parameter and density were estimated as 0.304 nm and 7.89 g/cm3, respectively. The test results indicated that the alloy had satisfactory mechanical properties with yield stress and tensile strength of about 530 MPa and 985 MPa, respectively.

Keywords: high-entropy alloy; mechanical property; microstructure.