Investigation of SiO2 Etch Characteristics by C6F6/Ar/O2 Plasmas Generated Using Inductively Coupled Plasma and Capacitively Coupled Plasma

Materials (Basel). 2022 Feb 10;15(4):1300. doi: 10.3390/ma15041300.

Abstract

The etching properties of C6F6/Ar/O2 in both an inductively coupled plasma (ICP) system and a capacitively coupled plasma (CCP) system were evaluated to investigate the effects of high C/F ratio of perfluorocarbon (PFC) gas on the etch characteristics of SiO2. When the SiO2 masked with ACL was etched with C6F6, for the CCP system, even though the etch selectivity was very high (20 ~ infinite), due to the heavy-ion bombardment possibly caused by the less dissociated high-mass ions from C6F6, tapered SiO2 etch profiles were observed. In the case of the ICP system, due to the higher dissociation of C6F6 and O2 compared to the CCP system, the etching of SiO2 required a much lower ratio of O2/C6F6 (~1.0) while showing a higher maximum SiO2 etch rate (~400 nm/min) and a lower etch selectivity (~6.5) compared with the CCP system. For the ICP etching, even though the etch selectivity was much lower than that by the CCP etching, due to less heavy-mass-ion bombardment in addition to an adequate fluorocarbon layer formation on the substrate caused by heavily dissociated species, highly anisotropic SiO2 etch profiles could be obtained at the optimized condition of the O2/C6F6 ratio (~1.0).

Keywords: C6F6; L-FC; capacitively coupled plasma (CCP); high aspect ratio contact (HARC); inductively coupled plasma (ICP); liquid fluorocarbon (PFC); plasma etching.