Cardiovascular, Lymphatic, and Ocular Health in Space

Life (Basel). 2022 Feb 11;12(2):268. doi: 10.3390/life12020268.

Abstract

Life on Earth has evolved continuously under Earth's 1 G force and the protection of the magnetosphere. Thus, astronauts exhibit maladaptive physiological responses during space travel. Exposure to harmful cosmic radiation and weightlessness are unique conditions to the deep-space environment responsible for several spaceflight-associated risks: visual impairment, immune dysfunction, and cancer due to cosmic radiation in astronauts. The evidence thus reviewed indicates that microgravity and cosmic radiation have deleterious effects on the cardiovascular, lymphatic, and vision systems of astronauts on long-duration space missions. The mechanisms responsible for the decline in these systems are potentially due to cytoskeletal filament rearrangement, endothelial dysfunction, and muscular atrophy. These factors may alter fluid hemodynamics within cardiovascular and lymphatic vasculatures such that greater fluid filtration causes facial and intracranial edema. Thus, microgravity induces cephalad fluid shifts contributing to spaceflight-associated neuro-ocular syndrome (SANS). Moreover, visual impairment via retinal ischemia and altered nitric oxide production may alter endothelial function. Based on rodent studies, cosmic radiation may exacerbate the effects of microgravity as observed in impaired endothelium and altered immunity. Relevant findings help understand the extent of these risks associated with spaceflight and suggest relevant countermeasures to protect astronaut health during deep-space missions.

Keywords: SANS; cephalad fluid shift; cosmic radiation; countermeasures; endothelial dysfunction; microgravity; spaceflight.

Publication types

  • Review