Haplotype-Resolved Genome Analyses Reveal Genetically Distinct Nuclei within a Commercial Cultivar of Lentinula edodes

J Fungi (Basel). 2022 Feb 9;8(2):167. doi: 10.3390/jof8020167.

Abstract

Lentinula edodes is a tetrapolar basidiomycete with two haploid nuclei in each cell during most of their life cycle. Understanding the two haploid nuclei genome structures and their interactions on growth and fruiting body development has significant practical implications, especially for commercial cultivars. In this study, we isolated and assembled the two haploid genomes from a commercial strain of L. edodes using Illumina, HiFi, and Hi-C technologies. The total genome lengths were 50.93 Mb and 49.80 Mb for the two monokaryons SP3 and SP30, respectively, with each assembled into 10 chromosomes with 99.63% and 98.91% anchoring rates, respectively, for contigs more than 100 Kb. Genome comparisons suggest that two haploid nuclei likely derived from distinct genetic ancestries, with ~30% of their genomes being unique or non-syntenic. Consistent with a tetrapolar mating system, the two mating-type loci A (matA) and B (matB) of L. edodes were found located on two different chromosomes. However, we identified a new but incomplete homeodomain (HD) sublocus at ~2.8 Mb from matA in both monokaryons. Our study provides a solid foundation for investigating the relationships among cultivars and between cultivars and wild strains and for studying how two genetically divergent nuclei coordinate to regulate fruiting body formation in L. edodes.

Keywords: Lentinula edodes; comparative genomics; de novo; dedikaryotization; dikaryon; gene enrichment; hybridization; mating-type loci; monokaryons.