Neural Differentiation of Human Dental Mesenchymal Stem Cells Induced by ATRA and UDP-4: A Comparative Study

Biomolecules. 2022 Jan 27;12(2):218. doi: 10.3390/biom12020218.

Abstract

Human mesenchymal stem cells (MSC) are multipotent stem cells, which are isolated from various sources. Currently, there is a worldwide interest for dental MSC to be used against neurodegenerative diseases, since they derive from the neural crest and express embryonic stem cell markers. This fact prompted us to explore their potential for neural trans-differentiation in culture. We employed all-trans-retinoic acid (ATRA) and 2-(3-ethylureido)-6-methylpyridine (UDP-4) to induce neural differentiation of human MSC from the dental apical papilla (SCAP). The SCAP were exposed to either agent separately and assessed for proliferation, viability, morphology, and gene expression of the following neural-specific markers: neuron-specific enolase (ENO2), neurofibromin 1 (NF1), choline acetyltransferase (CHAT), tyrosine hydroxylase (TH), and the vesicular GABA transporter (SLC32A1). They were also assessed for the expression of glial fibrillary acidic protein (GFAP) and neuronal nuclear antigen (NeuN) by immunofluorescence. ATRA or UDP-4 treatment inhibited the cell growth and promoted limited cell death, but to a different extent. The addition of the neuroprotective agent recombinant human erythropoietin-alpha (rhEPO-α) enhanced the UDP-4-inducing capacity for more than three weeks. ATRA or UDP-4 treatment significantly upregulated ENO2 and NF1 expression, indicating neuronal differentiation. Moreover, the ATRA treatment significantly induced the upregulation of the GABAergic-specific SLC32A1, while the UDP-4 treatment led to the significant upregulation of the adrenergic-specific TH. The UDP-4 treatment induced the expression of NeuN and GFAP after four and three weeks, respectively, while the ATRA-treatment did not. Our findings indicate that SCAP can be differentiated into neural-like cells after treatment with ATRA or UDP-4 by exhibiting a disparate pattern of differentiation. Therefore, UDP-4 is suggested here as a new potent neural-differentiation-inducing compound, which, when combined with rhEPO-α, could lay the foundation for robust stem-cell-based therapies of neurodegeneration.

Keywords: 2-(3-ethylureido)-6-methylpyridine (UDP-4); all-trans-retinoic acid (ATRA); immunofluorescence; mesenchymal stem cells (MSC); neural trans-differentiation; recombinant human erythropoietin-alpha (rhEPO-α); stem cells from the apical papilla (SCAP).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation
  • Cells, Cultured
  • Humans
  • Mesenchymal Stem Cells*
  • Pyridines
  • Tretinoin / metabolism
  • Tretinoin / pharmacology
  • Urea / analogs & derivatives
  • Urea / metabolism

Substances

  • Pyridines
  • 2-(3-ethylureido)-6-methylpyridine
  • Tretinoin
  • Urea