Coomassie brilliant blue G-250 dye attenuates bleomycin-induced lung fibrosis by regulating the NF-κB and NLRP3 crosstalk: A novel approach for filling an unmet medical need

Biomed Pharmacother. 2022 Apr:148:112723. doi: 10.1016/j.biopha.2022.112723. Epub 2022 Feb 21.

Abstract

Pulmonary fibrosis (PF) is a life-threatening disorder with a very poor prognosis. Because of the complexity of PF pathological mechanisms, filling such an unmet medical need is challenging. A number of pulmonary diseases have been linked to the activation of NF-κB and the NLRP3 inflammasome. Coomassie brilliant blue G-250 (CBBG) is proved to be a safe highly selective P2×7R antagonist with promising consequent inactivation of NLRP3 inflammasome. This is the first report to investigate the effect of CBBG on the bleomycin-induced lung fibrosis in rats. Our findings revealed that CBBG resulted in a significant improvement in histological features and oxidative status biomarkers of bleomycin-exposed lung tissue. Additionally, CBBG repressed collagen deposition as indicated after the analysis of hydroxyproline, TGF-β, PDGF-BB, TIMP-1, MMP-9, Col1a1, SMA and ICAM-1. It also exhibited anti-inflammatory potential as revealed by the determination of TNF-α, IL-1β, IL-18, MCP-1 in the lung tissue. In the bronchoalveolar lavage, the total protein and the LDH activity were substantially reduced. The lung protective effects of CBBG might be attributed on the one hand to the inhibition of NLRP3 inflammasome and on the other hand to the inactivation of NF-κB. Decreased levels of phospho-p65 and its DNA-binding activity as well as the analysis of TLR4 confirmed NF-κB inactivation. Caspase-1 activity is suppressed as a consequence of inhibiting NLRP3 inflammasome assembly. To conclude, CBBG may act as a primary or adjuvant therapy for the management of PF and therefore it may pose an opportunity for a novel approach to an unmet medical need.

Keywords: Bleomycin; Coomassie brilliant blue G-250; Lung fibrosis; NF-κB; NLRP3.

MeSH terms

  • Animals
  • Bleomycin / toxicity
  • Inflammasomes / metabolism
  • NF-kappa B* / metabolism
  • NLR Family, Pyrin Domain-Containing 3 Protein / metabolism
  • Pulmonary Fibrosis* / chemically induced
  • Pulmonary Fibrosis* / drug therapy
  • Pulmonary Fibrosis* / metabolism
  • Rats
  • Rosaniline Dyes

Substances

  • Inflammasomes
  • NF-kappa B
  • NLR Family, Pyrin Domain-Containing 3 Protein
  • Nlrp3 protein, rat
  • Rosaniline Dyes
  • Bleomycin
  • coomassie Brilliant Blue