Validation study of ambient dose equivalent conversion coefficients for radiocaesium distributed in the ground: lessons from the Fukushima Daiichi Nuclear Power Station accident

Radiat Environ Biophys. 2022 Mar;61(1):147-159. doi: 10.1007/s00411-022-00969-3. Epub 2022 Feb 24.

Abstract

Ambient dose equivalent conversion coefficients (ADCRCs) for converting a radiocaesium inventory to ambient dose equivalent rates (air dose rates) depend on the vertical distribution of radiocaesium in soil. To access the validity of ADCRCs, the air dose rate at 1 m above ground and the vertical distribution of radiocaesium in the soil around the Fukushima Daiichi Nuclear Power Station (FDNPS) present between 2011 and 2019 were measured in the current study. ADCRCs were calculated using air dose rates and three different parameters representing the vertical distribution of radiocaesium in soil: (1) relaxation mass depth (β), (2) effective relaxation mass depth (βeff) and (3) relaxation mass depth recommended by the International Commission on Radiation Units and Measurements before the FDNPS accident (βICRU). When ADCRCs based on β and βeff were compared to those based on β and βICRU, a positive correlation was found. To confirm the applicability of the ADCRCs based on the three types of β values, radiocaesium inventories were estimated using the air dose rates and ADCRCs, and the obtained results were compared to the radiocaesium inventory calculated using soil sample measurements. Good agreement was observed between the radiocaesium inventories estimated using the ADCRCs based on β and βeff and measured by investigating soil samples. By contrast, the radiocaesium inventory estimated using the ADCRCs based on βICRU was overestimated compared with that measured by investigating soil samples. These findings support the applicability of ADCRCs based on β and βeff in the Fukushima region. Furthermore, the βICRU result suggests that differences in soil characteristics between Japan and other countries should be considered for evaluating ADCRCs.

Keywords: Ambient dose equivalent rate; Fukushima Daiichi Nuclear Power Station accident; Radiocaesium inventory; Soil; Vertical radiocaesium distribution.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cesium Radioisotopes
  • Fukushima Nuclear Accident*
  • Japan
  • Radiation Monitoring* / methods
  • Soil
  • Soil Pollutants, Radioactive* / analysis

Substances

  • Cesium Radioisotopes
  • Soil
  • Soil Pollutants, Radioactive