Computational multi-wavelength phase synthesis using convolutional neural networks [Invited]

Appl Opt. 2022 Feb 10;61(5):B132-B146. doi: 10.1364/AO.439323.

Abstract

Multi-wavelength digital holographic microscopy (MWDHM) provides indirect measurements of the refractive index for non-dispersive samples. Successive-shot MWDHM is not appropriate for dynamic samples and single-shot MWDHM significantly increases the complexity of the optical setup due to the need for multiple lasers or a wavelength tunable source. Here we consider deep learning convolutional neural networks for computational phase synthesis to obtain high-speed simultaneous phase estimates on different wavelengths and thus single-shot estimates of the integral refractive index without increased experimental complexity. This novel, to the best of our knowledge, computational concept is validated using cell phantoms consisting of internal refractive index variations representing cytoplasm and membrane-bound organelles, respectively, and a simulation of a realistic holographic recording process. Specifically, in this work we employed data-driven computational techniques to perform accurate dual-wavelength hologram synthesis (hologram-to-hologram prediction), dual-wavelength phase synthesis (unwrapped phase-to-phase prediction), direct phase-to-index prediction using a single wavelength, hologram-to-phase prediction, and 2D phase unwrapping with sharp discontinuities (wrapped-to-unwrapped phase prediction).

MeSH terms

  • Computer Simulation
  • Holography* / methods
  • Lasers
  • Neural Networks, Computer
  • Refractometry / methods