The recombinant human fibroblast growth factor-18 (sprifermin) improves tendon-to-bone healing by promoting chondrogenesis in a rat rotator cuff repair model

J Shoulder Elbow Surg. 2022 Aug;31(8):1617-1627. doi: 10.1016/j.jse.2022.01.137. Epub 2022 Feb 20.

Abstract

Background: Rotator cuff healing is improved by reconstructing the fibrocartilaginous structure of the tendon-to-bone enthesis. Fibroblast growth factor (FGF)-18 (sprifermin) is a well-known growth factor that improves articular cartilage repair via its anabolic effect. This study aimed to investigate the effect of recombinant human FGF-18 (rhFGF-18) on the chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in vitro and tendon-to-bone healing in a rat model of rotator cuff repair.

Methods: Histological and reverse transcription-quantitative real-time polymerase chain reaction analyses of chondral pellets cultured with different concentrations of rhFGF-18 were performed. Bilateral detachment and repair of the supraspinatus tendon were performed on rats. The rats were administered 0.2 mL of sodium alginate (SA) hydrogel with (rhFGF-18/SA group, n = 12) or without (SA group, n = 12) 20 μg of rhFGF-18 into the repaired side. The simple repair group (n = 12) served as a control. At 4 and 8 weeks after surgery, histological analysis and biomechanical tests were performed.

Results: After chondrogenesis induction, compared with the control group, 10 ng/mL of rhFGF-18 increased pellet volume significantly (P = .002), with improved histological staining. It was noted that 10 ng/mL of rhFGF-18 upregulated the mRNA expression (relative ratio to control) of aggrecan (2.59 ± 0.29, P < .001), SRY-box transcription factor 9 (1.88 ± 0.05, P < .001), and type II collagen (1.46 ± 0.18, P = .009). At 4 and 8 weeks after surgery, more fibrocartilage and cartilaginous extracellular matrix was observed in rhFGF-18/SA-treated rats. The semiquantitative data from picrosirius red staining test were 31.1 ± 4.5 vs. 61.2 ± 4.1 at 4 weeks (P < .001) and 61.5 ± 2.8 vs. 80.5 ± 10.5 at 8 weeks (P = .002) (control vs. rhFGF-18/SA). Ultimate failure load (25.42 ± 3.61 N vs. 18.87 ± 2.71 N at 4 weeks and 28.63 ± 5.22 N vs. 22.15 ± 3.11 N at 8 weeks; P = .006 and P = .03, respectively) and stiffness (18.49 ± 1.38 N/mm vs. 14.48 ± 2.01 N/mm at 8 weeks, P = .01) were higher in the rhFGF-18/SA group than in the control group.

Conclusion: rhFGF-18 promoted chondrogenesis in the hBMSCs in vitro. rhFGF-18/SA improved tendon-to-bone healing in the rats by promoting regeneration of the fibrocartilage enthesis. rhFGF-18 (sprifermin) may be beneficial in improving tendon-to-bone healing after rotator cuff repair.

Keywords: Fibroblast growth factor 18; chondrogenesis; enthesis healing; rotator cuff tear; sprifermin; supraspinatus tendon.

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Chondrogenesis
  • Fibroblast Growth Factors* / pharmacology
  • Humans
  • Rats
  • Rats, Sprague-Dawley
  • Recombinant Proteins / therapeutic use
  • Rotator Cuff Injuries* / drug therapy
  • Rotator Cuff Injuries* / pathology
  • Rotator Cuff Injuries* / surgery
  • Rotator Cuff* / pathology
  • Rotator Cuff* / surgery
  • Tendons / pathology
  • Tendons / surgery
  • Wound Healing

Substances

  • Recombinant Proteins
  • fibroblast growth factor 18
  • Fibroblast Growth Factors