Accumulated High-intensity Interval Training Protocol: A New Approach to Study Health Markers in Wistar Rats

J Vis Exp. 2022 Feb 2:(180). doi: 10.3791/63328.

Abstract

High-Intensity Interval Training (HIIT) and accumulated exercises are two time-efficient programs to improve health in humans and animal models. However, to date, there are no studies on whether HIIT performed in an accumulated fashion is as effective as a traditional HIIT performed with single daily sessions in improving health markers. This paper presents the effects of a new HIIT protocol, called accumulated HIIT, on body weight gain, maximal oxygen consumption (VO2max), and cardiac hypertrophy in young Wistar rats. Sixty-day-old male Wistar rats were assigned to three groups: untrained (UN; n = 16), HIIT performed with single daily sessions (1-HIIT; n = 16), and HIIT performed with three daily sessions (3-HIIT; n = 16). Body weight and VO2max were recorded before and after the training period. The VO2max measurements were taken using a metabolic analyzer at the maximal running velocity (Vmax). The training was performed for both HIIT groups five days per week over eight weeks with the same weekly progression of the exercise intensity (85-100% Vmax). The 1-HIIT group performed single daily sessions (6 bouts of 1 min interspersed with 1 min of passive recovery). The 3-HIIT group performed three daily sessions (2 bouts of 1 min interspersed with 1 min of passive recovery with an interval of 4 h between bouts). After the last VO2max test, the rats were euthanized, and their hearts were harvested and weighed. The results showed that 3-HIIT had similar beneficial effects to 1-HIIT in preventing body weight gain, improving VO2max, and inducing cardiac hypertrophy. These findings reveal for the first time the efficacy of an accumulated HIIT protocol on the health markers of young Wistar rats. This new HIIT protocol may be more feasible than traditional HIIT protocols as exercise can be split into very short sessions throughout a day in this new approach.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Animals
  • Heart Rate
  • High-Intensity Interval Training* / methods
  • Male
  • Oxygen Consumption
  • Rats
  • Rats, Wistar
  • Running*