Identifying Actionable Variants Using Capture-Based Targeted Sequencing in 563 Patients With Non-Small Cell Lung Carcinoma

Front Oncol. 2022 Feb 4:11:812433. doi: 10.3389/fonc.2021.812433. eCollection 2021.

Abstract

Although the NSCLC diagnostic standards recommend the detection of driver gene mutation, comprehensive genomic profiling has not been used widely in clinical practice. As to the different mutation spectrum characteristics between populations, the research based on Chinese NSCLC cohort is very important for clinical practice. Therefore, we collected 563 surgical specimens from patients with non-small cell lung carcinoma and applied capture-based sequencing using eight-gene panel. We identified 556 variants, with 416 potentially actionable variants in 54.88% (309/563) patients. These single nucleotide variants, insertions and deletions were most commonly found in EGFR (55%), followed by ERBB2 (12%), KRAS (11%), PIK3CA (9%), MET (8%), BRAF (7%), DDR2 (2%), NRAS (0.3%). By using ten protein function prediction algorithms, we also identified 30 novel potentially pathogenic variants. Ninety-eight patients harbored EFGR exon 21 p.L858R mutation and the catalytic domain of the protein tyrosine kinase (PTKc) in EGFR is largely mutated. In addition, there were nine frequent pathogenic variants found in five or more patients. This data provides the potential molecular basis for directing the treatment of lung cancer.

Keywords: EGFR; NSCLC; capture-based targeted sequencing; mutation; targeted therapy.