A Preliminary Study for an Intraoperative 3D Bioprinting Treatment of Severe Burn Injuries

Plast Reconstr Surg Glob Open. 2022 Jan 31;10(1):e4056. doi: 10.1097/GOX.0000000000004056. eCollection 2022 Jan.

Abstract

Intraoperative three-dimensional fabrication of living tissues could be the next biomedical revolution in patient treatment.

Approach: We developed a surgery-ready robotic three-dimensional bioprinter and demonstrated that a bioprinting procedure using medical grade hydrogel could be performed using a 6-axis robotic arm in vivo for treating burn injuries.

Results: We conducted a pilot swine animal study on a deep third-degree severe burn model. We observed that the use of cell-laden bioink as treatment substantially affects skin regeneration, producing in situ fibroblast growth factor and vascular endothelial growth factor, necessary for tissue regeneration and re-epidermalization of the wound.

Conclusions: We described an animal study of intraoperative three-dimensional bioprinting living tissue. This emerging technology brings the first proof of in vivo skin printing feasibility using a surgery-ready robotic arm-based bioprinter. Our positive outcome in skin regeneration, joined with this procedure's feasibility, allow us to envision the possibility of using this innovative approach in a human clinical trial in the near future.