Refined Multiscale Entropy Analysis of Wrist Pulse for Gender Difference in Traditional Chinese Medicine among Young Individuals

Evid Based Complement Alternat Med. 2022 Feb 8:2022:7285312. doi: 10.1155/2022/7285312. eCollection 2022.

Abstract

Pulse signal analysis plays an important role in promoting the objectification of traditional Chinese medicine (TCM). Like electrocardiogram (ECG) signals, wrist pulse signals are mainly caused by cardiac activities and are valuable in analyzing cardiac diseases. A large number of studies have reported ECG signals can distinguish gender characteristics of normal healthy subjects using entropy complexity measures, consistently showing more complexity in females than males. No research up to date, however, has been found on examining gender differences with wrist pulse signals of healthy subjects on entropy complexity measures. This paper is aimed to fill in the research gap, which could, in turn, provide a deeper insight into the pulse signal and might identify potential differences between ECG signals and pulse signals. In particular, several complementary entropy measures with corresponding refined composite multiscale versions are established to perform the analysis for the filtered TCM pulse signals. Experimental results reveal that regardless of entropy measures used, there is no statistically significant gender difference in terms of entropy complexity, indicating that the pulse signal holds less gender characteristics than the ECG signal. In view of these findings, wrist pulse signals could be likely to provide different pieces of information to ECG signals. The present study is the first to quantitatively evaluate gender differences in healthy pulse signals with measures of entropy complexity and more importantly; we expect this study could make contribution to the ongoing pulse intelligent diagnosis and objective analysis, further facilitating the modernization of TCM pulse diagnosis.