The application research of AI image recognition and processing technology in the early diagnosis of the COVID-19

BMC Med Imaging. 2022 Feb 17;22(1):29. doi: 10.1186/s12880-022-00753-1.

Abstract

Background: This study intends to establish a combined prediction model that integrates the clinical symptoms,the lung lesion volume, and the radiomics features of patients with COVID-19, resulting in a new model to predict the severity of COVID-19.

Methods: The clinical data of 386 patients with COVID-19 at several hospitals, as well as images of certain patients during their hospitalization, were collected retrospectively to create a database of patients with COVID-19 pneumonia. The contour of lungs and lesion locations may be retrieved from CT scans using a CT-image-based quantitative discrimination and trend analysis method for COVID-19 and the Mask R-CNN deep neural network model to create 3D data of lung lesions. The quantitative COVID-19 factors were then determined, on which the diagnosis of the development of the patients' symptoms could be established. Then, using an artificial neural network, a prediction model of the severity of COVID-19 was constructed by combining characteristic imaging features on CT slices with clinical factors. ANN neural network was used for training, and tenfold cross-validation was used to verify the prediction model. The diagnostic performance of this model is verified by the receiver operating characteristic (ROC) curve.

Results: CT radiomics features extraction and analysis based on a deep neural network can detect COVID-19 patients with an 86% sensitivity and an 85% specificity. According to the ROC curve, the constructed severity prediction model indicates that the AUC of patients with severe COVID-19 is 0.761, with sensitivity and specificity of 79.1% and 73.1%, respectively.

Conclusions: The combined prediction model for severe COVID-19 pneumonia, which is based on deep learning and integrates clinical aspects, pulmonary lesion volume, and radiomics features of patients, has a remarkable differential ability for predicting the course of disease in COVID-19 patients. This may assist in the early prevention of severe COVID-19 symptoms.

Keywords: Artificial intelligence; COVID-19; Computed tomography; Diagnosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Artificial Intelligence*
  • COVID-19 / diagnosis*
  • Early Diagnosis
  • Female
  • Humans
  • Male
  • Middle Aged
  • Retrospective Studies