Effects of COVID-19 protective face masks and wearing durations on respiratory haemodynamic physiology and exhaled breath constituents

Eur Respir J. 2022 Sep 22;60(3):2200009. doi: 10.1183/13993003.00009-2022. Print 2022 Sep.

Abstract

Background: While assumed to protect against coronavirus transmission, face masks may have effects on respiratory-haemodynamic parameters. Within this pilot study, we investigated immediate and progressive effects of FFP2 and surgical masks on exhaled breath constituents and physiological attributes in 30 adults at rest.

Methods: We continuously monitored exhaled breath profiles within mask space in older (age 60-80 years) and young to middle-aged (age 20-59 years) adults over the period of 15 and 30 min by high-resolution real-time mass-spectrometry. Peripheral oxygen saturation (S pO2 ) and respiratory and haemodynamic parameters were measured (noninvasively) simultaneously.

Results: Profound, consistent and significant (p≤0.001) changes in S pO2 (≥60_FFP2-15 min: 5.8±1.3%↓, ≥60_surgical-15 min: 3.6±0.9%↓, <60_FFP2-30 min: 1.9±1.0%↓, <60_surgical-30 min: 0.9±0.6%↓) and end-tidal carbon dioxide tension (P ETCO2 ) (≥60_FFP2-15 min: 19.1±8.0%↑, ≥60_surgical-15 min: 11.6±7.6%↑, <60_FFP2- 30 min: 12.1±4.5%↑, <60_surgical- 30 min: 9.3±4.1%↑) indicate ascending deoxygenation and hypercarbia. Secondary changes (p≤0.005) to haemodynamic parameters (e.g. mean arterial pressure (MAP) ≥60_FFP2-15 min: 9.8±10.4%↑) were found. Exhalation of bloodborne volatile metabolites, e.g. aldehydes, hemiterpene, organosulfur, short-chain fatty acids, alcohols, ketone, aromatics, nitrile and monoterpene mirrored behaviour of cardiac output, MAP, S pO2 , respiratory rate and P ETCO2 . Exhaled humidity (e.g. ≥60_FFP2-15 min: 7.1±5.8%↑) and exhaled oxygen (e.g. ≥60_FFP2-15 min: 6.1±10.0%↓) changed significantly (p≤0.005) over time.

Conclusions: Breathomics allows unique physiometabolic insights into immediate and transient effects of face mask wearing. Physiological parameters and breath profiles of endogenous and/or exogenous volatile metabolites indicated putative cross-talk between transient hypoxaemia, oxidative stress, hypercarbia, vasoconstriction, altered systemic microbial activity, energy homeostasis, compartmental storage and washout. FFP2 masks had a more pronounced effect than surgical masks. Older adults were more vulnerable to FFP2 mask-induced hypercarbia, arterial oxygen decline, blood pressure fluctuations and concomitant physiological and metabolic effects.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Alcohols
  • Aldehydes
  • COVID-19*
  • Carbon Dioxide / metabolism
  • Exhalation*
  • Hemiterpenes
  • Hemodynamics
  • Humans
  • Ketones
  • Masks
  • Middle Aged
  • Monoterpenes
  • Nitriles
  • Oxygen
  • Pilot Projects
  • Young Adult

Substances

  • Alcohols
  • Aldehydes
  • Hemiterpenes
  • Ketones
  • Monoterpenes
  • Nitriles
  • Carbon Dioxide
  • Oxygen