ZNF204P is a stemness-associated oncogenic long non-coding RNA in hepatocellular carcinoma

BMB Rep. 2022 Jun;55(6):281-286. doi: 10.5483/BMBRep.2022.55.6.001.

Abstract

Hepatocellular carcinoma is a major health burden, and though various treatments through much research are available, difficulties in early diagnosis and drug resistance to chemotherapy-based treatments render several ineffective. Cancer stem cell model has been used to explain formation of heterogeneous cell population within tumor mass, which is one of the underlying causes of high recurrence rate and acquired chemoresistance, highlighting the importance of CSC identification and understanding the molecular mechanisms of CSC drivers. Extracellular CSCmarkers such as CD133, CD90 and EpCAM have been used successfully in CSC isolation, but studies have indicated that increasingly complex combinations are required for accurate identification. Pseudogene-derived long non-coding RNAs are useful candidates as intracellular CSC markers - factors that regulate pluripotency and self-renewal - given their cancer-specific expression and versatile regulation across several levels. Here, we present the use of microarray data to identify stemness-associated factors in liver cancer, and selection of sole pseudogenederived lncRNA ZNF204P for experimental validation. ZNF204P knockdown impairs cell proliferation and migration/invasion. As the cytosolic ZNF204P shares miRNA binding sites with OCT4 and SOX2, well-known drivers of pluripotency and self-renewal, we propose that ZNF204P promotes tumorigenesis through the miRNA-145-5p/OCT4, SOX2 axis. [BMB Reports 2022; 55(6): 281-286].

Publication types

  • News

MeSH terms

  • Carcinogenesis / metabolism
  • Carcinoma, Hepatocellular* / genetics
  • Carcinoma, Hepatocellular* / metabolism
  • Cell Line, Tumor
  • Cell Proliferation / genetics
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Liver Neoplasms* / genetics
  • Liver Neoplasms* / metabolism
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Neoplastic Stem Cells / metabolism
  • RNA, Long Noncoding* / genetics
  • RNA, Long Noncoding* / metabolism
  • Zinc Fingers* / genetics

Substances

  • MIRN145 microRNA, human
  • MicroRNAs
  • RNA, Long Noncoding