Tailoring mechanical and in vitro biological properties of calcium‒silicate based bioceramic through iron doping in developing future material

J Mech Behav Biomed Mater. 2022 Apr:128:105122. doi: 10.1016/j.jmbbm.2022.105122. Epub 2022 Feb 7.

Abstract

Dense iron-doped akermanite ceramics with 0.3, 0.6 and 0.9 mol% of Fe3+ were synthesized via high-speed planetary ball milling and subsequently subjected to sintering at 1200 and 1250 °C. The aim of the current work was to investigate the effect of trivalent iron (Fe3+) in tuning the physicomechanical and in vitro biological properties of akermanite. The incorporation of Fe3+ into akermanite host and sintering at a high temperature of 1200 °C resulted in a synergistic effect in enhancing the sinterability and densification of akermanite ceramics. Although varying the Fe3+ content, it was found that similar densification and mechanical properties (i.e., diametral tensile strength, Vickers microhardness and fracture toughness) were observed for the doped ceramics at 1250 °C, indicating that this newly developed formulation is temperature-dependent. Fe3+-doped akermanite ceramics revealed greater in vitro bioactivity as compared to undoped akermanite, demonstrated by better coverage of needle-like apatite precipitates after 21 days of immersion in simulated body fluid. Additionally, Rat-1 cells cultured in direct contact with Fe3+-doped akermanite ceramics showed almost double levels of cell proliferation than their undoped counterpart on both 3 and 7 days of culture. Our finding suggests that 0.9Fe-AK ceramic is a suitable formulation to be considered for future bone substitute material as it provides sufficient mechanical strength as well as good bioactivity and the ability to encourage cell proliferation.

Keywords: Akermanite; Biological properties; In vitro; Iron-doped akermanite; Mechanical properties; Trivalent ions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apatites
  • Bone Substitutes*
  • Calcium*
  • Ceramics
  • Iron
  • Rats
  • Silicates

Substances

  • Apatites
  • Bone Substitutes
  • Silicates
  • Iron
  • Calcium