Comparison of Recruitment Patterns of Sessile Marine Invertebrates According to Substrate Characteristics

Int J Environ Res Public Health. 2022 Jan 19;19(3):1083. doi: 10.3390/ijerph19031083.

Abstract

A community of benthic invertebrates, including sessile adult-stage invertebrates, can negatively effect corrosion, deformation, and increased fuel consumption by attaching to artificial structures, a phenomenon known as marine biofouling. Investigating the relationship between benthic communities and artificial structures or substrates (to which the organisms attach) can help clarify the factors influencing marine biofouling. Therefore, in our study, natural (stone) and artificial (rubber, tarpaulin, and iron) substrates were installed in three harbors (Mokpo, Tongyeong, and Busan), and the structures of the communities attached to each substrate were compared. The total study period was 15 months (September 2016 to December 2017), and field surveys were performed at 3-month intervals. The three survey sites had significant differences in the structure of the sessile community present. In particular, Tongyeong was significantly different from Mokpo and Busan due to the continuous dominance of Cirripedia. When comparing natural and artificial substrate by sites, significant differences were observed in the community structure in all three surveyed sites. In Mokpo and Busan, colonial ascidians were dominant on natural substrate rather than artificial substrates; post-summer, Cirripedia coverage was higher on artificial substrates than natural substrate due to corrosion. Tongyeong showed a different pattern from that of Mokpo and Busan. After the summer, Bivalvia dominated on natural substrate over artificial substrates, affecting the differences between natural and artificial substrates. Our results demonstrate the recruitment patterns of sessile marine invertebrates according to substrate characteristics and can be used as basic information for biofouling management in marine environment.

Keywords: Cirripedia; artificial substrate; bivalve; colonial ascidian; marine biofouling; sessile invertebrates.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aquatic Organisms
  • Biofouling*
  • Bivalvia*
  • Ecosystem
  • Invertebrates