The Structure of Bitumen: Conceptual Models and Experimental Evidences

Materials (Basel). 2022 Jan 25;15(3):905. doi: 10.3390/ma15030905.

Abstract

Bitumen, one of the by-products of petroleum industry processes, is the most common binder used in road pavements and in the construction industry in general. It is a complex organic mixture of a broad range of hydrocarbons classified into four chemical families, collectively known with the acronym SARA fractions, which include saturates, aromatics, resins and asphaltenes. Since the 1940s, researchers working on bitumen and the science behind its existence, nature and application have investigated the spatial organization and arrangement of several molecular species present in the binder. Therefore, several models have been proposed in the literature, and they are more or less corroborated by experimental studies, although most of them are model-dependent; for example, the structural investigations based on scattering techniques. One of the most popular models that has met with a wide consensus (both experimentally and of the modeling/computational type) is the one aiming at the colloidal description of bitumen's microstructure. Other types of models have appeared in the literature that propose alternative views to the colloidal scheme, equally valid and capable of providing results that comply with experimental and theoretical evidence. Spurred by the constant advancement of research in the field of bitumen science, this literature review is aimed at providing a thorough, continuous and adept state of knowledge on the modeling efforts herein elaborated, in order to more precisely describe the intricacy of the bituminous microstructure. In this body of work, experimental evidence, along with details of bitumen's microstructure (depicting the colloidal state of bitumen), is particularly emphasized. We will also try to shed light on the evolution of the experimental and theoretical results that have focused on the aspect of the association and aggregation properties of asphaltenes in various models and real systems.

Keywords: asphalt binder; asphaltenes; bitumen; colloids; crude oil; fractals; scattering techniques.

Publication types

  • Review