High-Performance IGZO Nanowire-Based Field-Effect Transistors with Random-Network Channels by Electrospun PVP Nanofiber Template Transfer

Polymers (Basel). 2022 Feb 8;14(3):651. doi: 10.3390/polym14030651.

Abstract

A random network of indium-gallium-zinc oxide (IGZO) nanowires was fabricated by electrospun-polyvinylpyrrolidone (PVP)-nanofiber template transfer. Conventional electrospun nanofibers have been extensively studied owing to their flexibility and inherently high surface-to-volume ratio. However, solution-based IGZO nanofibers have critical issues such as poor electrical properties, reliability, and uniformity. Furthermore, high-temperature calcination, which is essential for vaporizing the polymer matrix, hinders their applications for flexible electronics. Therefore, sputter-based IGZO nanowires were obtained in this study using electrospun PVP nanofibers as an etching mask to overcome the limitations of conventional electrospun IGZO nanofibers. Field-effect transistors (FETs) were fabricated using two types of channels, that is, the nanofiber template-transferred IGZO nanowires and electrospun IGZO nanofibers. A comparison of the transmittance, adhesion, electrical properties, reliability, and uniformity of these two channels in operation revealed that the nanofiber template-transferred IGZO nanowire FETs demonstrated higher transmittance, stronger substrate adhesion, superior electrical performance, and operational reliability and uniformity compared to the electrospun IGZO nanofiber FETs. The proposed IGZO nanowires fabricated by PVP nanofiber template transfer are expected to be a promising channel structure that overcomes the limitations of conventional electrospun IGZO nanofibers.

Keywords: electrospinning; field-effect transistors; indium–gallium–zinc oxide; polyvinylpyrrolidone; random-network nanowire.