Study of the Influence of the Manufacturing Parameters on Tensile Properties of Thermoplastic Elastomers

Polymers (Basel). 2022 Jan 31;14(3):576. doi: 10.3390/polym14030576.

Abstract

Additive manufacturing (AM) has increased its field of application, not only for prototypes but also for final parts. Therefore, the need to study new materials is currently growing. This paper aims to study the effect of the printing parameters used in two different thermoplastic elastomers (PEBA 90A and TPU 98A) subjected to tensile tests, evaluating a competent alternative to the currently most used 3D printed materials. To achieve it, a full factorial design experiment is applied to analyze the influence on the tensile responses of two printing parameters: the layer height and the fill density. In addition, an analysis of variance (ANOVA) is used to describe the relations among the parameters and the mechanical responses obtained. Moreover, assessment of damping properties was done. Results show that each thermoplastic elastomer should be studied separately, although the proposed methodology can be used for each material independently of their nature. Finally, a correlation between the printing parameters and the mechanical behavior of TPU 98A and PEBA 90A was found: the layer height and the infill are statistically influential parameters for both materials.

Keywords: additive manufacturing; fused filament fabrication; tensile tests; thermoplastic elastomers.