Effects of Dietary Multienzyme Complex Supplementation on Growth Performance, Digestive Capacity, Histomorphology, Blood Metabolites and Hepatic Glycometabolism in Snakehead (Channa argus)

Animals (Basel). 2022 Feb 4;12(3):380. doi: 10.3390/ani12030380.

Abstract

The present study evaluated the impact of dietary multienzyme complex (MEC) supplementation on growth performance, digestive enzyme activity, histomorphology, serum metabolism and hepatopancreas glycometabolism in snakeheads (Channa argus). A total of 600 fish (initial weight, 69.70 ± 0.30 g) were randomly divided into four groups. Four diets were formulated: (1) control (basic diet); (2) E1 (400 U kg-1 amylase, 150 U kg-1 acid protease, 1900 U kg-1 neutral protease and basic diet); (3) E2 (800 U kg-1 amylase, 300 U kg-1 acid protease, 3800 U kg-1 neutral protease and basic diet); and (4) E3 (1200 U kg-1 amylase, 450 U kg-1 acid protease, 5700 U kg-1 neutral protease and basic diet). The results show that the E2 group increased the specific growth rate, weight gain rate and the final body weight, as well as decreasing the blood urea nitrogen, alanine aminotransferase and triglyceride. The mRNA levels and activities of digestive enzymes and key glucose metabolism enzymes in the hepatopancreas were enhanced in snakeheads fed the MEC. Meanwhile, moderate MEC diet (E2 groups) supplementation improved digestive tract morphology, increased the glycogen in the hepatopancreas and the lipids in the dorsal muscle. Moreover, plasma metabolomics revealed differential metabolites mainly involved in amino acid metabolism. These findings suggest that dietary supplementation with the MEC improved growth performance, digestive tract morphology, gene expression and the activity of digestive enzymes, enhanced the glycolysis-gluconeogenesis and amino acid metabolism of snakeheads, and the optimal composition of the MEC was group E2.

Keywords: gastrointestinal function; glycometabolism; growth performance; metabolomics; multienzyme complex; snakehead (Channa argus).