Improving photocatalytic activity of the ZnS QDs via lanthanide doping and photosensitizing with GO and g-C3N4 for degradation of an azo dye and bisphenol-A under visible light irradiation

Chemosphere. 2022 May:295:133917. doi: 10.1016/j.chemosphere.2022.133917. Epub 2022 Feb 11.

Abstract

In this research, insertion of Gd ions (2 wt%) into the crystalline lattice of the ZnS QDs enhanced the photocatalytic activity of the QDs. In addition, the influence of graphene oxide (GO) and graphitic carbon nitride (g-C3N4) was assessed on the photocatalytic activity of the ZnS QDs through degradation of acid red 14 (AR14) and bisphenol-A (BA) under visible light. Higher photocatalytic degradation efficiency (97.1% for AR14 and 67.4% for BA within 180 min) and higher total organic carbon (TOC) removal (67.1% for AR14 and 59.2% for BA within 5 h) was achieved in the presence of ZnS QDs/g-C3N4 compared with ZnS QDs/GO nanocomposite. Finally, the Gd-doped ZnS QDs were hybridized with g-C3N4 as optimal support to fabricate a potent visible-light-driven photocatalyst for the decomposition of organic contaminants. The maximum photocatalytic degradation of 99.1% and 80.5% were achieved for AR14 and BA, respectively, in the presence of Gd-doped ZnS QDs/g-C3N4 nanocomposite. The photosensitization mechanism was suggested for the improved photocatalytic activity of the ZnS QDs/GO, ZnS QDs/g-C3N4, and Gd-doped ZnS QDs/g-C3N4 nanocomposites under visible light.

Keywords: Gd doping; Graphene oxide; Graphitic carbon nitride; Photocatalysis; Zinc sulfide quantum dots.

MeSH terms

  • Azo Compounds
  • Catalysis
  • Graphite
  • Lanthanoid Series Elements*
  • Light
  • Sulfides
  • Zinc Compounds

Substances

  • Azo Compounds
  • Lanthanoid Series Elements
  • Sulfides
  • Zinc Compounds
  • graphene oxide
  • Graphite
  • zinc sulfide