Photochemical Synthesis and Spectroscopy of Covalent PAH Dimers

J Phys Chem A. 2022 Feb 24;126(7):1144-1157. doi: 10.1021/acs.jpca.1c10606. Epub 2022 Feb 12.

Abstract

Laser photochemistry of pressed-pellet samples of polycyclic aromatic hydrocarbons (PAHs) produces covalently bonded dimers and some higher polymers. This chemistry was discovered initially via laser desorption time-of-flight mass spectrometry experiments, which produced masses (m/z) of 2M-2 and 2M-4 (where M is the monomer parent mass). Dimers are believed to be formed from photochemical dehydrogenation and radical polymerization chemistry in the desorption plume. Replication of these ablation conditions at higher throughput allowed PAH dimers of pyrene, perylene, and coronene to be produced and collected in milligram quantities. Differential sublimation provided purification of the dimers and elimination of residual monomers. The purified dimers were investigated with UV-visible, IR, and Raman spectroscopy, complemented by computational studies using density functional theory at the CAM-B3LYP/def2-TZV level. Calculations and predicted spectra were calibrated by comparison with the corresponding monomers and used to determine the lowest energy dimer structures. Infrared and Raman spectroscopy provided few distinctive signatures, but UV-visible spectra detected new transitions for each dimer. The comparison of simulated and experimental spectra allows determination of the most prevalent structures for the PAH dimers. The work presented here provides interesting insights into the spectroscopy of extended aromatic systems and a new strategy for the photochemical synthesis of large PAH dimers.