Microscopic Imaging of Endosomal Trafficking of ABA Receptors

Methods Mol Biol. 2022:2462:59-69. doi: 10.1007/978-1-0716-2156-1_5.

Abstract

The abscisic acid (ABA) is a key hormone for stress tolerance. The balance between growth/development and stress responses is crucial for the optimal course of plant life meaning that plants need to control the timing and extent of ABA pathway activation. In this regard, protein turnover regulation by means of both the ubiquitin-proteasome system (UPS) and non-26S proteasome endomembrane trafficking pathways, plays a critical role in the regulation of ABA signaling activation and deactivation. Over the last few years, the ubiquitination of ABA receptors PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) at the plasma membrane by the RING between RING fingers (RBR)-type E3 ligase RING FINGER OF SEED LONGEVITY1 (RSL1) triggering their internalization through the clathrin-mediated endocytosis (CME) pathway, followed by their endosomal trafficking and delivery to the vacuole for degradation, was reported. For this process, the direct role of some components of the endosomal sorting complex required for transport (ESCRT) machinery, that is, FYVE DOMAIN-CONTAINING PROTEIN 1 (FYVE1)/FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1) and VACUOLAR PROTEIN SORTING23A (VPS23A) members of ESCRT-I complex, and ALG-2 INTERACTING PROTEIN-X (ALIX) associated protein of ESCRT-III, was reported. In this chapter, we will detail two methods for imaging endosomal trafficking of ABA receptor proteins by confocal microscopy: (a) colocalization of GFP-PYL4 (also known as RCAR10) and CLATHRIN LIGHT CHAIN 2 (CLC2)-mOrange in clathrin-coated vesicles in Nicotiana benthamiana leaf cells and (b) localization of GFP-PYL4 into Wortmannin (WM)-enlarged late endosomes in Arabidopsis thaliana root cells.

Keywords: Abscisic acid receptors; CLC2; Clathrin-mediated endocytosis; ESCRT; Endosomal trafficking; PYR/PYL/RCAR; RSL1; Vacuolar degradation; Wortmannin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Abscisic Acid / metabolism
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / metabolism
  • Endosomes / metabolism
  • Ubiquitination

Substances

  • Arabidopsis Proteins
  • Abscisic Acid