Polymer interdigitated pillar electrostatic (PIPE) actuators

Microsyst Nanoeng. 2022 Jan 31:8:18. doi: 10.1038/s41378-021-00328-0. eCollection 2022.

Abstract

This work reports a three-dimensional polymer interdigitated pillar electrostatic actuator that can produce force densities 5-10× higher than those of biological muscles. The theory of operation, scaling, and stability is investigated using analytical and FEM models. The actuator consists of two high-density arrays of interdigitated pillars that work against a restoring force generated by an integrated flexure spring. The actuator architecture enables linear actuation with higher displacements and pull-in free actuation to prevent the in-use stiction associated with other electrostatic actuators. The pillars and springs are 3D printed together in the same structure. The pillars are coated with a gold-palladium alloy layer to form conductive electrodes. The space between the pillars is filled with liquid dielectrics for higher breakdown voltages and larger electrostatic forces due to the increase in the dielectric constant. We demonstrated a prototype actuator that produced a maximum work density of 54.6 µJ/cc and an electrical-to-mechanical energy coupling factor of 32% when actuated at 4000 V. The device was operated for more than 100,000 cycles with no degradation in displacements. The flexible polymer body was robust, allowing the actuator to operate even after high mechanical force impact, which was demonstrated by operation after drop tests. As it is scaled further, the reported actuator will enable soft and flexible muscle-like actuators that can be stacked in series and parallel to scale the resulting forces. This work paves the way for high-energy density actuators for microrobotic applications.

Keywords: Electrical and electronic engineering; Engineering.