Allometric conservatism in the evolution of bird beaks

Evol Lett. 2021 Dec 27;6(1):83-91. doi: 10.1002/evl3.267. eCollection 2022 Feb.

Abstract

Evolution can involve periods of rapid divergent adaptation and expansion in the range of diversity, but evolution can also be relatively conservative over certain timescales due to functional, genetic-developmental, and ecological constraints. One way in which evolution may be conservative is in terms of allometry, the scaling relationship between the traits of organisms and body size. Here, we investigate patterns of allometric conservatism in the evolution of bird beaks with beak size and body size data for a representative sample of over 5000 extant bird species within a phylogenetic framework. We identify clades in which the allometric relationship between beak size and body size has remained relatively conserved across species over millions to tens of millions of years. We find that allometric conservatism is nonetheless punctuated by occasional shifts in the slopes and intercepts of allometric relationships. A steady accumulation of such shifts through time has given rise to the tremendous diversity of beak size relative to body size across birds today. Our findings are consistent with the Simpsonian vision of macroevolution, with evolutionary conservatism being the rule but with occasional shifts to new adaptive zones.

Keywords: Allometry; bird beaks; constraints; evolutionary conservatism.