Anisotropy measure from three diffusion-encoding gradient directions

Magn Reson Imaging. 2022 May:88:38-43. doi: 10.1016/j.mri.2022.01.014. Epub 2022 Feb 2.

Abstract

We propose a method that can provide information about the anisotropy and orientation of diffusion in the brain from only 3 orthogonal gradient directions without imposing additional assumptions. The method is based on the Diffusion Anisotropy (DiA) that measures the distance from a diffusion signal to its isotropic equivalent. The original formulation based on a Spherical Harmonics basis allows to go down to only 3 orthogonal directions in order to estimate the measure. In addition, an alternative simplification and a color-coding representation are also proposed. Acquisitions from a publicly available database are used to test the viability of the proposal. The DiA succeeded in providing anisotropy information from the white matter using only 3 diffusion-encoding directions. The price to pay for such reduced acquisition is an increment in the variability of the data and a subestimation of the metric on those tracts not aligned with the acquired directions. Nevertheless, the calculation of anisotropy information from DMRI is feasible using fewer than 6 gradient directions by using DiA. The method is totally compatible with existing acquisition protocols, and it may provide complementary information about orientation in fast diffusion acquisitions.

Keywords: Diffusion MRI; Diffusion anisotropy; Fast acquisition; Fractional anisotropy; White matter.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anisotropy
  • Brain / diagnostic imaging
  • Diffusion
  • Diffusion Magnetic Resonance Imaging* / methods
  • White Matter* / diagnostic imaging